Moure-Garrido, Marta; Campo, Celeste; García-Rubio, Carlos Análisis estadístico del tráfico DoH para la detección del uso malicioso de túneles Conference Investigación en Ciberseguridad Actas de las VII Jornadas Nacionales (7º.2022.Bilbao) , 2024, ISBN: 978-84-88734-13-6. Abstract | Links | BibTeX | Tags: analisis estadistico, compromise, cynamon, dns tunnels, DoH, malicious doh Moure-Garrido, Marta; Campo-Vázquez, Celeste; García-Rubio, Carlos Real time detection of malicious DoH traffic using statistical analysis Journal Article In: COMPUTER NETWORKS, vol. 234, iss. 109910, pp. 1-10, 2023, ISSN: 1389-1286. Abstract | Links | BibTeX | Tags: classification, compromise, computer science, cynamon, dns tunnels, doh traffic, intrusion detection system, malicious doh, Qursa, statistical analysis Moure-Garrido, Marta; Campo-Vázquez, Celeste; García-Rubio, Carlos Detecting Malicious Use of DoH Tunnels Using Statistical Traffic Analysis Conference PE-WASUN '22: Proceedings of the 19th ACM International Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, & Ubiquitous Networks, ACM, 2022, ISBN: 978-1-4503-9483-3. Abstract | Links | BibTeX | Tags: classification, compromise, cynamon, dns tunnels, doh traffic, magos, malicious doh, statistical analysis2024
@conference{marta002,
title = {Análisis estadístico del tráfico DoH para la detección del uso malicioso de túneles},
author = {Marta Moure-Garrido and Celeste Campo and Carlos García-Rubio},
url = {https://dialnet.unirioja.es/servlet/articulo?codigo=9206590},
isbn = {978-84-88734-13-6},
year = {2024},
date = {2024-07-10},
urldate = {2024-07-10},
booktitle = {Investigación en Ciberseguridad Actas de las VII Jornadas Nacionales (7º.2022.Bilbao) },
pages = {38-41},
abstract = {Las primeras versiones de DNS presentaban ciertos problemas de seguridad: integridad, autenticidad y privacidad. Para solventarlos se definió DNSSEC, pero esta versión
seguía sin garantizar privacidad. Por ello, se definieron DNS sobre TLS (DoT) en 2016 y DNS sobre HTTPS (DoH) en 2018. En los ultimos años se ha empleado la tunelización DNS para encapsular trafico maligno. Las versiones DoT y DoH han complicado la detección de estos túneles dado que los datos van encriptados. En trabajos anteriores se emplean técnicas de aprendizaje automático para identificar túneles DoH, pero tienen limitaciones. En este trabajo realizamos un análisis estadístico para aprender el patrón del tráfico DoH y estudiar las diferencias entre el tráfico benigno y el tráfico creado con herramientas de tunelización. El análisis revela que ciertos parámetros estadísticos permiten diferenciar el trafico. El siguiente paso de la investigación es aplicar técnicas más elaboradas basándonos en el análisis realizado.},
keywords = {analisis estadistico, compromise, cynamon, dns tunnels, DoH, malicious doh},
pubstate = {published},
tppubtype = {conference}
}
seguía sin garantizar privacidad. Por ello, se definieron DNS sobre TLS (DoT) en 2016 y DNS sobre HTTPS (DoH) en 2018. En los ultimos años se ha empleado la tunelización DNS para encapsular trafico maligno. Las versiones DoT y DoH han complicado la detección de estos túneles dado que los datos van encriptados. En trabajos anteriores se emplean técnicas de aprendizaje automático para identificar túneles DoH, pero tienen limitaciones. En este trabajo realizamos un análisis estadístico para aprender el patrón del tráfico DoH y estudiar las diferencias entre el tráfico benigno y el tráfico creado con herramientas de tunelización. El análisis revela que ciertos parámetros estadísticos permiten diferenciar el trafico. El siguiente paso de la investigación es aplicar técnicas más elaboradas basándonos en el análisis realizado.2023
@article{campo002,
title = {Real time detection of malicious DoH traffic using statistical analysis },
author = {Marta Moure-Garrido and Celeste Campo-Vázquez and Carlos García-Rubio},
url = {http://hdl.handle.net/10016/38151},
doi = {https://doi.org/10.1016/j.comnet.2023.109910},
issn = {1389-1286},
year = {2023},
date = {2023-10-09},
urldate = {2023-10-09},
journal = {COMPUTER NETWORKS},
volume = {234},
issue = {109910},
pages = {1-10},
abstract = {The DNS protocol plays a fundamental role in the operation of ubiquitous networks. All devices connected to these networks need DNS to work, both for traditional domain name to IP address translation, and for more advanced services such as resource discovery. DNS over HTTPS (DoH) solves certain security problems present in the DNS protocol. However, malicious DNS tunnels, a covert way of encapsulating malicious traffic in a DNS connection, are difficult to detect because the encrypted data prevents performing an analysis of the content of the DNS traffic.
In this study, we introduce a real-time system for detecting malicious DoH tunnels, which is based on analyzing DoH traffic using statistical methods. Our research demonstrates that it is feasible to identify in real-time malicious traffic by analyzing specific parameters extracted from DoH traffic. In addition, we conducted statistical analysis to identify the most significant features that distinguish malicious traffic from benign traffic. Using the selected features, we achieved satisfactory results in classifying DoH traffic as either benign or malicious.},
keywords = {classification, compromise, computer science, cynamon, dns tunnels, doh traffic, intrusion detection system, malicious doh, Qursa, statistical analysis},
pubstate = {published},
tppubtype = {article}
}
In this study, we introduce a real-time system for detecting malicious DoH tunnels, which is based on analyzing DoH traffic using statistical methods. Our research demonstrates that it is feasible to identify in real-time malicious traffic by analyzing specific parameters extracted from DoH traffic. In addition, we conducted statistical analysis to identify the most significant features that distinguish malicious traffic from benign traffic. Using the selected features, we achieved satisfactory results in classifying DoH traffic as either benign or malicious.2022
@conference{campo015,
title = {Detecting Malicious Use of DoH Tunnels Using Statistical Traffic Analysis},
author = {Marta Moure-Garrido and Celeste Campo-Vázquez and Carlos García-Rubio},
url = {https://dl.acm.org/doi/10.1145/3551663.3558605},
doi = {https://doi.org/10.1145/3551663.3558605},
isbn = {978-1-4503-9483-3},
year = {2022},
date = {2022-10-24},
urldate = {2022-10-24},
booktitle = {PE-WASUN '22: Proceedings of the 19th ACM International Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, & Ubiquitous Networks},
publisher = {ACM},
abstract = {DNS plays a fundamental role in the operation of ubiquitous networks. All devices connected to these networks need DNS to work, both for traditional domain name to IP address translation, and for more advanced services such as resource discovery. At first, the DNS communication protocol presented certain security problems: integrity, authenticity and confidentiality. DNSSEC provides security but still does not guarantee confidentiality. To solve this problem, DNS over TLS (DoT) and DNS over HTTPS (DoH) were defined. In recent years, DNS tunneling, a covert form of encapsulating data transmission, has been used to encapsulate malicious traffic in a DNS connection. DoT and DoH versions complicate the detection of these tunnels because the encrypted data prevents performing an analysis of the content of the DNS traffic. Previous work has used machine learning techniques to identify DoH tunnels, but these have limitations. In this study, we identify the most significant features that singularize malicious traffic from benign traffic by statistical analysis. Based on the selected features, we obtain satisfactory results in the classification between benign and malicious DoH traffic. The study reveals that it is possible to differentiate traffic based on certain statistical parameters.},
keywords = {classification, compromise, cynamon, dns tunnels, doh traffic, magos, malicious doh, statistical analysis},
pubstate = {published},
tppubtype = {conference}
}
Publications
Análisis estadístico del tráfico DoH para la detección del uso malicioso de túneles Conference Investigación en Ciberseguridad Actas de las VII Jornadas Nacionales (7º.2022.Bilbao) , 2024, ISBN: 978-84-88734-13-6. Real time detection of malicious DoH traffic using statistical analysis Journal Article In: COMPUTER NETWORKS, vol. 234, iss. 109910, pp. 1-10, 2023, ISSN: 1389-1286. Detecting Malicious Use of DoH Tunnels Using Statistical Traffic Analysis Conference PE-WASUN '22: Proceedings of the 19th ACM International Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, & Ubiquitous Networks, ACM, 2022, ISBN: 978-1-4503-9483-3.2024
2023
2022